LLM-Assisted Synthesis of
High-Assurance C Programs

Prasita Mukherjee, Minghai Lu, Benjamin Delaware

4 PURDUE R

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

Program
Guarantees

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

23 ,CVC5

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

23 ,CVC5

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

23 ,CVC5

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

23 ,CVC5

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

233 CVC5

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

Verification
Effort

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

22 'CVC5,

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

wt

Verification
Effort

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

23 ,CVC5

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

w i

Verification
= felg

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

23 ,CVC5

Synthesizer
Program

Guarantees SuSLik Synquid

w i

Verification
= felg

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

23 ,CVC5

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

w i

Verification
= felg

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

22 CVC:

Program
Guarantees SuSLik

Synquid o
[POPL’19] [PLDI'16] @
Rocq
Verification
= j{e]g

Generality

P, Q: pre/post-condition

C: program
Theorem pisCorrect:
. F{P}c{0O}.
roof.
o tacticl. Machine Checked
* > tacticl.
tactic3.

Qed.

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

22 'CVC5,

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

wt

Verification
Effort

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

23 ,CVC5

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

Generality

Goal of Program Synthesis : Automatically generate a correct program
from an arbitrary specification of its behavior

23 ,CVC5

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

LLM

Generality

Goal of Program SYNVER : Automatically generate a correct program
from an arbitrary specification of its behavior

23 ,CVC5

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

LLM

Generality

Goal of Program SYNVER : Automatically generate a correct program
from an arbitrary specification of its behavior

A Two Phased

z 5 CVCS Approach

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

LLM

Generality

Goal of Program SYNVER : Automatically generate a correct program
from an arbitrary specification of its behavior

A LLM generates
programs easy Two Phased
z 5 CVC5 to verify Approach
Synthesizer
LLM

Program
Guarantees SuSLik Synquid
[POPL’19] [PLDI’16]

Generality

Goal of Program SYNVER : Automatically generate a correct program
from an arbitrary specification of its behavior

LLM + symbolic

A LLM generates

Two Phased :
I 7 programs easy reasoning to
.4 5 [CVC5; to verify Approach automate proofs

Synthesizer
Program

Guarantees SuSLik Synquid
[POPL'19] [PLDI'16]

LLM

Generality

Goal of Program SYNVER : Automatically generate a correct program
from an arbitrary specification of its behavior

LLM + symbolic

A LLM generates

Two Phased :
I 7 programs easy reasoning to
.4 5 I CVCS, to verify Approach automate proofs

Synthesizer
LLM

Program
Guarantees SuSLik Synquid
[POPL’19] [PLDI’16] Verified
Software
Toolchain

Generality

Goal of Program SYNVER : Automatically generate a correct program
from an arbitrary specification of its behavior

LLM + symbolic

A LLM generates

Two Phased :
I 7 programs easy reasoning to
.4 5 I CVCS, to verify Approach automate proofs

Synthesizer

-

Program
Verified
Software

Guarantees SuSLik Synquid
CompCert C

[POPL’19] [PLDI’16]
Toolchain

Generality

Goal of Program SYNVER : Automatically generate a correct program
from an arbitrary specification of its behavior

LLM + symbolic

A LLM generates

Two Phased :
I 7 programs easy reasoning to
.4 5 [CVC5; to verify Approach automate proofs

-

LLM

Program -
Verified a
Software

Guarantees SuSLik Synquid
CompCert C

[POPL’19] [PLDI’16]
Toolchain

Generality

Phase 1: Generate

Phase 1: Generate

* (Generate programs that are easier to automatically verify

Phase 1: Generate

* (Generate programs that are easier to automatically verify

 Programs use recursion instead of loops

Phase 1: Generate

Generate programs that are easier to automatically verify

 Programs use recursion instead of loops

(hl > 11 *h2 = [2)
struct sll *append (struct sll *hl,
struct sll *hZ2) {
1f (hl == NULL) {
return hZ2;
}
hl->next = append(hl->next, h2);
return hl;
}
(h (1 ++ 12))

Phase 1: Generate

Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

(hl > 11 *h2 = [2)
struct sll *append (struct sll *hl,
struct sll *hZ2) {
1f (hl == NULL) {
return hZ2;
}
hl->next = append(hl->next, h2);
return hl;
}
(h (1 ++ 12))

Phase 1: Generate

Generate programs that are easier to automatically verify

 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

d d *
(hl > 1% h2 > 12) vord gad Gk T

struct sll *append (struct sll *hl, }

struct sll *h2) { (x> a*yr b}

if (hl == NULL) { | | |
return h2; vold swap (1int *x, 1nt *y) {
} int a = *x, b = *y;
hl->next = append (hl->next, h2); ix = b;
return hl; vy = ay
} add (x) ;
(he (1 + 12)} add (y)

}

x> b+ *y—>(a+1)} @

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

Initial Prompt

Biases, Examples,
Specification

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

Initial Prompt

Biases, Examples,
Specification

1

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

Initial Prompt

Biases, Examples,
Specification

3 T
Formal: {h; — [* h, — L)} {return h, h — ([; + [,)}

English: Append two singly linked lists I1 and 2.
Return the pointer to the head of the appended list.

1/0: ((hl — []*h2 — [1]}, {h — [1]}),
{hl - [1,2] *h2 — [3]}, {h — [1,2,3]})

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

; S
Initial Prompt

_________ Coder

>
Biases, Examples, LLM
Specification

3 T
Formal: {h; — [* h, — L)} {return h, h — ([; + [,)}

English: Append two singly linked lists I1 and 2.
Return the pointer to the head of the appended list.

1/0: ((hl — []*h2 — [1]}, {h — [1]}),
{hl - [1,2] *h2 — [3]}, {h — [1,2,3]})

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

; S
Initial Prompt

_________ Coder >

>
Biases, Examples, LLM
Specification

3 T
Formal: {h; — [* h, — L)} {return h, h — ([; + [,)}

English: Append two singly linked lists I1 and 2.
Return the pointer to the head of the appended list.

1/0: ((hl — []*h2 — [1]}, {h — [1]}),
{hl - [1,2] *h2 — [3]}, {h — [1,2,3]})

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

Initial P : @ h C Program a)
mereme Coder » Syntactic
Biases, Examples, " LLM Checks
Specification - J N\ Y,

3 T
Formal: {i;, = [, * h, = L} {retun h, h —» (I, ++ 1,)}
English: Append two singly linked lists I1 and 2.

Return the pointer to the head of the appended list.
1/0: {hl — [|*h2 — [11}, {h — [1]}),
({hl = [1,2]* h2 — [3]}, {h — [1,2,3]})

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

Initial P : @ h C Program e)

nitat rromp Coder > Syntactic
————————— >
Biases, Examples, " LLM Checks
Specification - J - J

3 T
Formal: {i;, = [, * h, = L} {retun h, h —» (I, ++ 1,)}
English: Append two singly linked lists I1 and 2.

Return the pointer to the head of the appended list.
1/0: {hl — [|*h2 — [11}, {h — [1]}),
({hl = [1,2]* h2 — [3]}, {h — [1,2,3]})

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

Initial P t @ A C Program " R
e Coder " Syntactic| Candidate » - 5
Biases, Examples, " LLM Checks | Program 456
Specification - J N\ Y,

3 T
Formal: {i;, = [, * h, = L} {retun h, h —» (I, ++ 1,)}
English: Append two singly linked lists I1 and 2.

Return the pointer to the head of the appended list.
1/0: {hl — [|*h2 — [11}, {h — [1]}),
{hl = [1,2]1*h2 = [3]}, {h — [1,2,3]})

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

Initial P t @ A C Program ~ R
e Coder *Syntactic| Candidate . Phase 2
Biases, Examples, " LLM Checks | Program ase
Specification - J N\ Y,

3 T
Formal: {i;, = [, * h, = L} {retun h, h —» (I, ++ 1,)}
English: Append two singly linked lists I1 and 2.

Return the pointer to the head of the appended list.
1/0: {hl — [|*h2 — [11}, {h — [1]}),
{hl = [1,2]1*h2 = [3]}, {h — [1,2,3]})

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

— h C Program 4 A
 Inttial Prompt @Coder "\Syntactic| Candidate Shase 2
Biases, Examples, T LLM . Checks | Program
Specification - J Syntax/Bias - J
é i Error

Re-Prompt

Error Type, Specification

Formal: {i;, = [, * h, = L} {retun h, h —» (I, ++ 1,)}
English: Append two singly linked lists I1 and 2.
Return the pointer to the head of the appended list.

1/0: ((hl — []*h2 — [1]}, {h — [1]}),
{hl - [1,2] *h2 — [3]}, {h — [1,2,3]})

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

iti I A C Program g N
 Inttial Prompt @Coder "\Syntactic| Candidate Shase 2
Biases, Examples, T LLM . Checks | Program
Specification - J Syntax/Bias - J
é i Error

Re-Prompt

Error Type, Specification

Formal: {i;, = [, * h, = L} {retun h, h —» (I, ++ 1,)}
English: Append two singly linked lists I1 and 2.
Return the pointer to the head of the appended list.

1/0: ((hl — []*h2 — [1]}, {h — [1]}),
{hl - [1,2] *h2 — [3]}, {h — [1,2,3]})

Phase 1: Generate

* (Generate programs that are easier to automatically verify
 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

Unverified
B

— h C Program 4 A
 Inttial Prompt @Coder "\Syntactic| Candidate Shase 2
Biases, Examples, T LLM . Checks | Program
Specification - J Syntax/Bias - J
é i Error

Re-Prompt

Error Type, Specification

Formal: {i;, = [, * h, = L} {retun h, h —» (I, ++ 1,)}
English: Append two singly linked lists I1 and 2.
Return the pointer to the head of the appended list.

1/0: ((hl — []*h2 — [1]}, {h — [1]}),
{hl - [1,2] *h2 — [3]}, {h — [1,2,3]})

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Phase 1

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

. H{P.}c. 10,}

root goal

~
Phase 1

» SepAuto

@
[l@
=

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Fully Verified

. H{P.}c. 10,}

root goal

~
Phase 1

ll‘_

& y

>epAuto

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Fully Verified

Viel[lnl,[..F{P;} ¢ {0;}] @ ~
________________ Prover
> LLM

. H{P.}c. 10,}

root goal n goal(s) after applying SepAuto

Phase 1

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Initial Prompt

Fully verified — fTTTTT—=—=————
A Examples of VST proofs,
Specification, Program
F{P)el0) vietal Frigen G ——
T D
root goal n goal(s) after applying SepAuto Prover
Phase 1 » SepAuto " LLM

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Initial Prompt

Fully verified — fTTTTT—=—=————
A Examples of VST proofs,
Specification, Program
FP)e (0 vietal Frigen G ——
o -
root goal n goal(s) after applying SepAuto Prover
Phase 1 » SepAuto " LLM
8 y - -

AP} {0}

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Initial Prompt

Fully verified — fTTTTT—=—=————
A Examples of VST proofs,
Specification, Program
FP)e (0 vietal Frigen G ——
o -
root goal n goal(s) after applying SepAuto Prover
Phase 1 » SepAuto " LLM
8 y - -

AP} {0}

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Initial Prompt

Fully verified — fTTTTT—=—=————
Examples of VST proofs,

Specification, Program

Vie([ln],[..F {P}c{0O]}] @ ¥ ~
________________ Prover
> LLM

. J
AP} {0}

. H{P.}c. 10,}

root goal

n goal(s) after applying SepAuto

Phase 1

v

Tactic 1
Tactic 2

Tactic 3

Tactic 4

Tactic b

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Initial Prompt
Fully verified — fTTTTT—=—=————
Examples of VST proofs,
Specification, Program

|_{Pr} Cr{Qr} VlE[l,l’l],[l‘ {Pl} Ci{Qi}] @ = ™

B _r_oc; 50;_ - n goal(s) after applying SepAuto Prover
Phase 1 " LLM
_ _J
AP} {0}
v
Tactic 1 z
O
3
Tactic 2 %
o
Tactic 3 2
@)
Tactic 4 %
g
Tactic 5 va

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Initial Prompt
Fully verified — fTTTTT—=—=————
Examples of VST proofs,
Specification, Program

Vie[lnl,[..F {P}c {0 @5% —
________________ Prover
> LLM

. J
AP} {0}

. H{P.}c. 10,}

root goal

n goal(s) after applying SepAuto

Phase 1

v

Conclusion y x Tactic 1 "
Blowup acric §
©)

No Progress <« X Tactic 2 cz)
5

Tactic 3 3

@)

Tactic 4 %

=

o

o

Tactic b v

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Initial Prompt
Fully verified — fTTTTT—=—=————
Examples of VST proofs,
Specification, Program

Vie[lnl,[..F {P}c {0 @5% —
________________ Prover
> LLM

. J
AP} {0}

. H{P.}c. 10,}

root goal

n goal(s) after applying SepAuto

Phase 1

v

Conclusion y x Tactic 1 "
Blowup acric §
% . :

No Progress <« Tactic 2 2
o

Tactic 3 2

. H{P'} {0} . _Cé
Tactic 4 2

o

o

0

Tactic b v

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Initial Prompt
Fully verified — fTTTTT—=—=————
Examples of VST proofs,
Specification, Program

Vie[lnl,[..F {P}c {0 @5% —
________________ Prover
> LLM

. J
AP} {0}

. H{P.}c. 10,}

root goal

n goal(s) after applying SepAuto

Phase 1

v

Conclusion y x Tactic 1 "
Blowup acric §
% . :

No Progress <« Tactic 2 2
o

Tactic 3 2

. H{P'} {0} . _Cé
Tactic 4 2

o

o

0

Tactic b v

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Initial Prompt

Fully Verified ~ |fmm———————=
Re-Prompt Examples of VST proofs,

_________ Specification, Program

Current Goal,
Generated Proof

Vie[lnl,[..F {P}c {0 @5% —
________________ Prover
> LLM

. J
AP} {0}

. H{P.}c. 10,}

root goal

n goal(s) after applying SepAuto

Phase 1

v

Conclusion y x Tactic 1 "
Blowup actic §
% . :

No Progress <« Tactic 2 2
o

Tactic 3 2

. H{P'} {0} . _Cé
Tactic 4 2

o

o

0

Tactic b v

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Fully Verified Initial Prompt

Re-Prompt Examples of VST proofs,

———————— Specification, Program
Current Goal,

Generated Proof

Vie[lnl[..F {P)}c {0, |
i € [Ln], [{P;} ;i {Q;}] @ N

. F{P.}c {0}

Phase 1 root goal Se AU to n goal(s) after applying SepAuto R PrOver
5P LLM
J N\ J
l o E AP} {0}
v
Tactic 1 é
Tactic 2 2
o
Tactic 3 e
O
Tactic 4 %
?
Tactic b &

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Fully Verified Initial Prompt

Re-Prompt Examples of VST proofs,

———————— Specification, Program
Current Goal,

Generated Proof

Vie[lnl[..F {P)}c {0, |
i € [Ln], [{P;} ;i {Q;}] @ N

. F{P.}c {0}

Phase 1 root goal Se AU to n goal(s) after applying SepAuto R PrOver
D P LLM
& J _ Y,

l AP} {0}
\ 4

Reason 1 < x Tactic 1 %
©)

Reason 2 < X Tactic 2 o
o

Reason 3 < X Tactic 3 S
x @)

Reason 4 < Tactic 4 i
O

O

Reason 5 <« X Tactic b £

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Fully Verified [AEN Hei e

Re-Prompt Examples of VST proofs,

———————— Specification, Program
Current Goal,

Generated Proof

. F{P.}c {0}

V. 1, ,..l_ Pi i [A 4
1€ [1,n], | 1P} ¢, {0;}] @ ~

root goal n goal(s) after applying SepAuto Prover
Phase 1 g goal(s) pplying Sep R
LLM
g J
A
. {P1} Cq {Ql}
\ 4
Reason 1 < x Tactic 1 %
x actic = o EA{P} 10}
-
Reason 2 < Tactic 2 f.g Re-Prompt
Reason 3 <« X Tactic 3 © |Failed Reasons, Current
x % Goal, Generated Proof
Reason 4 < Tactic 4 2
O
©
Reason 5 < x Tactic b &’

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Fully Verified [AEN Hei e

Re-Prompt Examples of VST proofs,

———————— Specification, Program
Current Goal,

Generated Proof

. F{P.}c {0}

V. 1, ,..l_ Pi i [A 4
1€ [1,n], | 1P} ¢, {0;}] @ ~

root goal n goal(s) after applying SepAuto Prover
Phase 1 g goal(s) pplying Sep R
LLM >
_ _ Unsolvable
. {P1} Cq {Ql}
\ 4
Reason 1 < x Tactic 1 %
x actic = o EA{P} 10}
-
Reason 2 < Tactic 2 f.g Re-Prompt
Reason 3 <« X Tactic 3 © |Failed Reasons, Current
x % Goal, Generated Proof
Reason 4 < Tactic 4 2
O
©
Reason 5 < x Tactic b &’

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Fully Verified [AEN Hei e

Re-Prompt Examples of VST proofs,

———————— Specification, Program
Current Goal,

Generated Proof

V. 1, ,..l_ Pi i [A 4
1€ [1,n], | 1P} ¢, {0;}] @ ~

. F{P.}c {0}

________________________ 4)
t | | ft lying SepAut
Phase 1 root goa SepAUtO n goal(s) after applying SepAuto » Prover Backtrack
i LLM .
: y L) Unsolvable \)
’ l P (O]
x v
(7p]
R 1 ' @
s2E0T iy o Tactic 1 ; L F (P e {Q)
Reason 2 < Tactic 2 f.g Re-Prompt
Reason 3 <« X Tactic 3 © |Failed Reasons, Current
x % Goal, Generated Proof
Reason 4 < Tactic 4 2
©
©
Reason 5 < x Tactic b &’

Phase 2: Verify

 Combination of symbolic reasoning (SepAuto) and LLM-based tactic
prediction

* Heuristics to select or reject the LLM-proposed tactic

Fully Verified [AEN Hei e
h Re-Prompt Examples of VST proofs,
vV Specification, Program Re-Prompt
currentGoal, | — —~71 — |(---—"—"—"—"-
I Generated Proof Failed Reason,
Generated Proof
. F{P}c (0]} Vie[ln],[..E{P;} ¢ {0;}] @ ¥
———————————————————————— A R AT S A
. <
Phase 1 root goal SepAuto n goal(s) after applying SepAuto » Frover Backtrack
o P LLM .
@ y L) Unsolvable \)
l P (0)
x v
(7p]
Reason 1 <« ' &
o Tactic 1 ; P 0)
Reason 2 < Tactic 2 f.g Re-Prompt
Reason 3 <« X Tactic 3 © |Failed Reasons, Current
x % Goal, Generated Proof
Reason 4 < Tactic 4 2
O
©
Reason 5 <« x Tactic b &’

Evaluation

Evaluation

* We evaluate SYNVER on three domains of synthesis:

Evaluation

* We evaluate SYNVER on three domains of synthesis:

 Basic [1] - 19 benchmarks. Use arrays and primitive types.

[1] M.R.H. Misu, C.V. Lopes, |. Ma, and J. Noble, “Towards Al-Assisted Synthesis of Verified Dafny Methods”, FSE 2024.

Evaluation

* We evaluate SYNVER on three domains of synthesis:
 Basic [1] - 19 benchmarks. Use arrays and primitive types.

 Heap [2] - 24 benchmarks. Use linked lists, trees and arrays.

[1] M.R.H. Misu, C.V. Lopes, |. Ma, and J. Noble, “Towards Al-Assisted Synthesis of Verified Dafny Methods”, FSE 2024.
[2] Y. Watanabe, K. Gopinathan, G. Pirlea, N. Polikarpova, and |. Sergey, “Certifying the synthesis of heap-manipulating programs”, ICFP 2021.

Evaluation

* We evaluate SYNVER on three domains of synthesis:
 Basic [1] - 19 benchmarks. Use arrays and primitive types.

 Heap [2] - 24 benchmarks. Use linked lists, trees and arrays.

* API [3] - 5 benchmarks.

1] M.R.H. Misu, C.V. Lopes, |. Ma, and J. Noble, “Towards Al-Assisted Synthesis of Verified Dafny Methods”, FSE 2024.
2] Y. Watanabe, K. Gopinathan, G. Pirlea, N. Polikarpova, and |. Sergey, “Certifying the synthesis of heap-manipulating programs”, ICFP 2021.
3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Introduction to Algorithms, Third Edition, 3rd ed.” The MIT Press, 2009.

Evaluation

* We evaluate SYNVER on three domains of synthesis:
 Basic [1] - 19 benchmarks. Use arrays and primitive types.
 Heap [2] - 24 benchmarks. Use linked lists, trees and arrays.

* API [3] - 5 benchmarks.

» SYNVER generates all programs correctly in the first try.

1] M.R.H. Misu, C.V. Lopes, |. Ma, and J. Noble, “Towards Al-Assisted Synthesis of Verified Dafny Methods”, FSE 2024.
2] Y. Watanabe, K. Gopinathan, G. Pirlea, N. Polikarpova, and |. Sergey, “Certifying the synthesis of heap-manipulating programs”, ICFP 2021.
3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Introduction to Algorithms, Third Edition, 3rd ed.” The MIT Press, 2009.

Evaluation

* We evaluate SYNVER on three domains of synthesis:
 Basic [1] - 19 benchmarks. Use arrays and primitive types.
 Heap [2] - 24 benchmarks. Use linked lists, trees and arrays.
* API [3] - 5 benchmarks.

 SYNVER generates all programs correctly in the first try.

 SYNVER fully verifies 70% of the programs.

1] M.R.H. Misu, C.V. Lopes, |. Ma, and J. Noble, “Towards Al-Assisted Synthesis of Verified Dafny Methods”, FSE 2024.
2] Y. Watanabe, K. Gopinathan, G. Pirlea, N. Polikarpova, and |. Sergey, “Certifying the synthesis of heap-manipulating programs”, ICFP 2021.
3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Introduction to Algorithms, Third Edition, 3rd ed.” The MIT Press, 2009.

Evaluation

* We evaluate SYNVER on three domains of synthesis:
 Basic [1] - 19 benchmarks. Use arrays and primitive types.
 Heap [2] - 24 benchmarks. Use linked lists, trees and arrays.
* API [3] - 5 benchmarks.

 SYNVER generates all programs correctly in the first try.

 SYNVER fully verifies 70% of the programs.

e Detailed evaluation on wall clock time, prompt components, and prover
comparisons are present in the paper!

1] M.R.H. Misu, C.V. Lopes, |. Ma, and J. Noble, “Towards Al-Assisted Synthesis of Verified Dafny Methods”, FSE 2024.

2] Y. Watanabe, K. Gopinathan, G. Pirlea, N. Polikarpova, and |. Sergey, “Certifying the synthesis of heap-manipulating programs”, ICFP 2021.
3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Introduction to Algorithms, Third Edition, 3rd ed.” The MIT Press, 2009.

Conclusions

» SYNVER is the first general purpose synthesizer for high-assurance C
programs

 Key idea 1: Syntactic biases to reduce human effort
 Key idea 2: Custom hybrid reasoning engine
* Evaluation: Automatically verifies majority of the programs
* Evaluation: Applicable to different domains of synthesis

 Check our poster and codebase out!

https://zenodo.org/records/17230953

mukher39@purdue.edu

mailto:mukher39@purdue.edu

Backup: How effective is SYNVER?

Q
A

Fully
Verified

Partially
Verified

of programs in each category

Basic
11 8

Heap
21 3

API

N
W

104 -

103 -

101! -

100 -

Proof Generation Time (Wall Clock)

(40.8m, 1.2h, 2.6h)

=

(1.2s, 29.4s, 53m)

]

(1.5h, 1.6h, 4.3h)

(2s, 3.7m, 32.5m)

=55

(1.7h, 2h, 2.4h)

==

(3.4m, 5.2m, 7m)

|
Basic

Heap

Boxes are labelled with the minimum, median, and maximum time

API

Backup: How effective is SYNVER?

Fully Percentage Of Discarded Tactics
.. Verified .
g -
Partially
Verified . (62,72, 77) =
- (80,81, 84)
S 1 L (63 ,83, 98) T
| . & 60 -
o/ Basic ¢
o
2 11 8 o
m O
O 5 40 - —
o Heap
O
- 1
- — 20_
o 21 3 (22 ,28.5, 35)
=
O
O 0,0, 68 0,0, 68
o API 0- o) (0.0, 68)
‘-Ic—l. 2 3 BaISiC Helap Ai’l
O
+=

Boxes are labelled with the minimum, median, and maximum percentage

