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P, Q: pre/post-condition

C: program
Theorem pisCorrect:
. F{P}c{0O}.
roof.
o tacticl. Machine Checked
* > tacticl.
tactic3.

Qed.
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Generate programs that are easier to automatically verify

 Programs use recursion instead of loops

 Programs only call helper functions whose specifications are available

d d *
(hl > 1% h2 > 12) vord gad Gk T

struct sll *append (struct sll *hl, }

struct sll *h2) { (x> a*yr b}

if (hl == NULL) { | | |
return h2; vold swap (1int *x, 1nt *y) {
} int a = *x, b = *y;
hl->next = append (hl->next, h2); ix = b;
return hl; vy = ay
} add (x) ;
(he (1 + 12)} add (y)

}

x> b+ *y—>(a+1)} @
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 Basic [1] - 19 benchmarks. Use arrays and primitive types.
 Heap [2] - 24 benchmarks. Use linked lists, trees and arrays.
* API [3] - 5 benchmarks.

 SYNVER generates all programs correctly in the first try.

 SYNVER fully verifies 70% of the programs.

e Detailed evaluation on wall clock time, prompt components, and prover
comparisons are present in the paper!
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Conclusions

» SYNVER is the first general purpose synthesizer for high-assurance C
programs

 Key idea 1: Syntactic biases to reduce human effort
 Key idea 2: Custom hybrid reasoning engine
* Evaluation: Automatically verifies majority of the programs
* Evaluation: Applicable to different domains of synthesis

 Check our poster and codebase out!

https://zenodo.org/records/17230953

mukher39@purdue.edu
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Backup: How effective is SYNVER?
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Backup: How effective is SYNVER?
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