
Admissible Strategies for Safety and

Reachability Objectives in Graph Games

Prasita Mukherjee
(174101042)

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Supervisor

Dr. Purandar Bhaduri

In partial fulfillment of the requirements for the degree of

Master of Technology, Computer Science and Engineering

May 16, 2019

Acknowledgements

I express my sincere gratitude towards my guide Dr. Purandar

Bhaduri for his constant support, encouragement and inspiration

throughout the project work. I specially acknowledge him for his

advice, supervision, and the vital contribution as and when required.

It is because of his constant and general interest and assistance that

this project has been successful.

I want to acknowledge my parents for motivating me and provid-

ing moral support during the course time of M.Tech. I also want to

acknowledge the Department Of Computer Science and inter depart-

ment teaching members for helping me by giving the basic idea.

Certificate

This is to certify that the project work entitled Admis-

sible Strategies for Safety and Reachability Objec-

tives in Graph Games being submitted to Department

of Computer Science and Engineering, Indian Institute of

Technology Guwahati by Prasita Mukherjee, in par-

tial fulfillment for the award of the degree of Master of

Technology, Computer Science and Engineering in, is a

bonafide work carried out by her under my supervision.

To the best of my knowledge it has not been submitted

elsewhere for award of degree.

........................

Dr. Purandar Bhaduri

Professor

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Abstract

Finding winning strategies for Player 1 (the system) against Player 2

(the environment) in graph games is the basis for synthesizing con-

trollers satisfying a specification. In many situations where winning

strategies do not exist, it is important to compute the best-effort (or

admissible) strategies. The thesis aims to compute admissible strate-

gies for safety and reachability objectives in graph games.

Contents

1 Introduction 1

2 Related Work 3

3 Preliminaries 6

4 Admissible Strategies for Safety Games 10

4.1 Complexity . 16

5 Admissible Strategies for Reachability Games 18

5.1 Complexity . 33

6 Conclusions 34

References 36

iv

List of Figures

3.1 Admissible strategy for safety . 8

3.2 Admissible strategy for reachability 8

5.1 Example demonstrating conditions 21

5.2 Player 1 chooses edge leading to u over edge leading to v 29

v

Chapter 1

Introduction

Games played on finite graphs, typically involving two players, have been a sub-

ject of widespread investigation in the field of computer science, with applications

primarily in the field of controller synthesis [1]. Typically, a winning strategy for

Player 1 (the system) against Player 2 (the environment) gives rise to a controller

that satisfies a given specification.

The games considered have a set of winning and losing nodes for Player 1. In

this work, the primary focus is on losing nodes and attempt to achieve best-effort

strategies, also known as admissible strategies [2]. In many applications finding

such a best-effort strategy when a winning strategy does not exist from a given

node is very useful. Instances of such applications are problems which do not

involve a strong sense of competition, i.e., Player 2 can be cooperative rather than

adversarial or more realistically when Player 2 is rational, i.e., focused more on

achieving its own objective rather than thwarting Player 1 from meeting its goal.

This happens, for instance, in component-based systems where the components

are autonomous agents such as robots which have their own objectives to meet

and are not necessarily adversarial. In such cases, Player 1 can end up winning if

this does not prevent Player 2 from meeting its goal, even if there is no strategy

1

that will win against all Player 2 strategies.

Safety and reachability are two very important goals in system design. Safety

requires plays to remain forever within a safe set of nodes, whereas reachability

requires a set of nodes to be visited after finitely many steps. The work computes

admissible strategies for these two types of objectives.

Admissible strategies are also known as non-dominated strategies i.e., the

game can be lost by such strategies if and only if no other strategy can win

the game starting from the same node against any strategy of Player 2. In this

work, the perspective of Player 1 is taken into consideration. The semantics are

defined analogously when played from Player 2’s perspective and the algorithms

hold good. The notion of admissibility is slightly different from Faella [3] and is

consistent with the definition of Brenguier et al. [2].

The rest of the thesis is organized as follows. First the related work done in

this area is discussed in Chapter 2, followed by the preliminaries and definitions

in 3. Then the two algorithms developed for safety and reachability objectives

are discussed in Chapters 4 and 5 respectively, along with their time complexity.

2

Chapter 2

Related Work

Determining the winning set of nodes and the winning strategies in a graph game

had been a primary concern in the past, and significant work has been done

for safety, reachability and more general ω-regular objectives in this area [4].

Work on cooperation and rational behavior of players is now an emergent area of

research [3; 5; 6; 7; 8].

Faella [3] discussed the potential benefits of real world applications in playing

a game from a losing node in a rational way to achieve the best possible results.

His primary focus was on best-effort strategies by relying on the cooperation of

the other player. He outlined a procedure to compute admissible strategies for

positional and prefix-independent goals, where the latter are goals closed under

adding or deleting finite prefixes to/from its elements. But he did not provide a

method for goals which are not prefix-independent, such as safety and reachability.

He claimed that if all Player 2 nodes are treated as Player 1 nodes, then the

winning strategies obtained, called cooperatively winning, are also admissible for

safety and reachability objectives. It is shown via examples that this claim is

incorrect and algorithms are provided for finding admissible strategies for safety

and reachability objectives, arguably the most important among all goals which

3

are non-prefix-independent.

Bloem et al. [5] discussed various approaches for dealing with assumptions

on environment behavior while solving games. They proposed four goals which

should be met by all system designs, out of which what is relevant here is the goal

of “not giving up” when the system guarantee cannot be enforced under worst-

case assumptions. As mentioned above, in many situations, the environment may

not be perfectly adversarial and provide the worst-case input. In such cases, it

makes sense for the system to try to meet its goal as much as possible, assuming

some level of cooperation from the environment. The work addresses precisely

this situation, finding admissible strategies for the important cases of safety and

reachability objectives. Note that, by definition, admissible strategies make the

minimal assumptions about cooperation from the other player.

Damm and Finkbeiner [6; 7] proposed algorithms for synthesizing and ver-

ifying dominant strategies which is based on construction of tree automata for

objectives specified in LTL. The notion of dominant strategy considered in the

work is identical to what is called an admissible strategy in this work. The work

is a special case of [6; 7], which considers safety and reachability objectives. The

algorithms developed are also much simpler, based primarily on graph-theoretic

notions and of lower complexity than the double exponential algorithm in [6; 7].

In [8], Fisman et al. introduce the idea of rational synthesis, i.e., synthesis

in the context of multiple autonomous agents where each agent has a goal of

its own and the goals are not necessarily adversarial. The approach provides a

strategy not just for the agent in question (called the system agent in [8]) but

for all the agents such that the specification of the system agent is satisfied and

the strategy profile for all the agents meet some desired solution concept, such

as the existence of a dominant strategy, Nash equilibrium, or subgame-perfect

equilibrium. In such equilibria, no agent has the incentive to unilaterally deviate

4

from its strategy. While admissible strategies are clearly related to the problem

of rational synthesis, exploring the exact relationship is part of future work.

5

Chapter 3

Preliminaries

A game structure G is defined as a pair (V,E) where

1. V = V1] V2 represents the finite set of vertices/nodes in the game graph,

where V1 and V2 are the sets of Player 1 and Player 2 nodes respectively.

2. E ⊆ V ×V represents the finite set of edges in the game graph. Every node

in V has a successor, i.e., ∀v ∈ V, ∃v′ ∈ V.(v, v′) ∈ E.

A play in G is defined as a sequence of nodes v0v1v2 . . . such that (vi, vi+1) ∈ E.

If the current node v ∈ V1, then Player 1 makes the next move by selecting an

edge (v, v′) ∈ E that takes the game to v′. If the current node v ∈ V2, a Player 2

move is defined analogously. A game G = (G,Win) is a pair of a game structure

and a winning condition Win, given by a set of plays in G.

A game can have various winning conditions (like Büchi, Muller, Parity, etc.)

that specify the set Win of plays that are won by Player 1. In the work, only safety

and reachability objectives are considered. For a game structure G = (V,E), a

safety objective is given by a set S ⊆ V of nodes. A play v0v1v2 . . . in V ω is

safe, i.e., winning for Player 1, if it never leaves the set S, i.e., vi ∈ S for all

i∈ N. Player 1 loses the game if the play enters V\S at any point. A reachability

6

objective is specified by a set R ⊆ V of nodes. The goal for Player 1 is to force

the game to reach a node in R, i.e., a play v0v1v2 . . . is winning for Player 1 if

vi ∈ R for some i∈ N.

A strategy for Player 1 is defined by a function σ : V ∗V1 → V that maps

the history of observed nodes to the next node. A Player 2 strategy is defined

analogously. Given strategies σ and ρ for Player 1 and Player 2 respectively, the

work defines Out(σ, ρ, v) as the unique word v0v1v2.. in V ω such that vi+1 = σ(vi)

if vi ∈ V1 and vi+1 = ρ(vi) otherwise, for all i ∈ N and v0 = v. The work defines

Out(σ, v) = {Out(σ, ρ, v) | ρ is a Player 2 strategy} as the set of outcomes from

node v when Player 1 plays according to strategy σ. A strategy σ for Player

1 from node v is winning if Out(σ, v) ⊆ Win, where Win is a set of winning

plays, i.e., σ is a winning strategy for Player 1 if for all Player 2 strategies ρ,

Out(σ, ρ, v) ∈ Win. The work defines val(σ, ρ, v) as 1 if Out(σ, ρ, v) ∈ Win and

0 otherwise. For a game G, a strategy for σ for Player 1 is said to be positional

(or memoryless) if σ depends only on the last node of the current history of the

game i.e., there is a function f : V1 → V such that σ(sv1) = f(v1) for all s ∈ V ∗.

For the winning conditions of safety and reachability, positional strategies suffice

and hence attention is restricted to such strategies in the rest of the thesis.

The following definitions appear in [2]. For any two Player 1 strategies σ1

and σ2, σ1 very weakly dominates σ2 at node v, if val(σ1, ρ, v) ≥ val(σ2, ρ, v).

A Player 1 strategy σ1 is dominated by another Player 1 strategy σ2 at node

v, if val(σ1, ρ, v) ≤ val(σ2, ρ, v), for all Player 2 strategies ρ and val(σ1, ρ, v) <

val(σ2, ρ, v) for at least one Player 2 strategy ρ. It is also said σ2 dominates σ1

at v in such a case. An admissible strategy for Player 1 is a strategy σ1 that is

not dominated by any other Player 1 strategy σ2 at any vertex v.

Figures 3.1 and 3.2 depict examples of admissible strategies for safety and

reachability, when there does not exist a winning strategy for Player 1 from node

7

S
v2

v1v0

v3

Figure 3.1: Admissible strategy for safety

R

v2

v1

v0

v3

v4

Figure 3.2: Admissible strategy for reachability

v0. Throughout the thesis Player 1 nodes are depicted by circles and Player 2

nodes by squares. Figure 3.1 is an example of a game with a safety objective,

where S = {v0, v1, v2}. Here Player 1 does not have a winning strategy from

v0 as Player 2 can always take the game to v3. But the Player 1 strategy σ1,

which chooses the edge (v0,v1) is better than the strategy σ2, which chooses the

edge (v0,v2), because the former performs strictly better than the latter against

the Player 2 strategy {v1 7→ v0, v2 7→ v3, v3 7→ v3}. Similarly for the reachability

game depicted in Figure 3.2 with R = {v4}, there does not exist a winning

strategy for Player 1 from v0. But the Player 1 strategy σ1 which chooses the

edge (v0, v1) is better than the strategy σ2 which chooses the edge (v0, v2), because

the former performs strictly better than the latter against the Player 2 strategy

{v1 7→ v4, v2 7→ v3}. These two examples also show that treating all Player 2

nodes as Player 1 nodes and finding winning strategies for Player 1 does not

8

identify the admissible strategies for safety and reachability games as claimed by

Faella [3].

9

Chapter 4

Admissible Strategies for Safety

Games

In this chapter, the algorithm is described for finding admissible strategies for

safety games and proof for its correctness is provided. Here the controllable

predecessor operator CPre(T) for T ⊆ V determines the set of nodes from which

Player 1 can force the game to move to a node in T in one step: CPre(T) =

{u|u ∈ V1 and ∃v ∈ T, (u, v) ∈ E} ∪ {u|u ∈ V2 and ∀v, (u, v) ∈ E ⇒ v ∈ T}.

Algorithm 1 presented below computes the set of winning nodes for safety

games specified by a safe set S, while playing from the perspective of Player 1. It

computes the winning nodes by computing the greatest fixed point of a monotone

operator on (2V ,⊆) [9].

Before presenting the algorithm for computing admissible strategies for safety

games (Algorithm 2), a few definitions are needed. These definitions apply to the

subgraph G′ := (S,E ′) of G induced by the safe set S of nodes, since for nodes

in V \S all strategies are losing for Player 1.

A potentially winning node is a Player 2 node not in W (i.e., it is a losing node

for Player 1) which lies on a cycle contained in the safe set S. A safety-admissible

10

Algorithm 1 Winning Nodes for Safety Games

Input Game structure G := (V,E) and S ⊆ V , the set of safe nodes
Output Set of winning nodes W

1: T := S
2: Y0 := T
3: i := 1
4: Yi := T ∩ CPre(Yi−1)
5: if Yi 6= Yi−1 then i := i + 1. Goto step 4
6: W := Yi
7: return W

cycle (s-admissible cycle in brief) is a cycle that lies within S and contains at

least one potentially winning node and does not contain a node in W . An s-

admissible cycle C with a set of potentially winning nodes H is minimal if there

is no other s-admissible cycle C ′ with the set of potentially winning nodes H ′ such

that H ′ is strictly contained in H. Paths(u,v) is the set of paths from u to v in the

subgraph G′ of G induced by S. Minimal s-admissible cycles play a crucial role in

identifying all admissible strategies for safety games. At any Player 1 node v in

a minimal s-admissible cycle C, if Player 1 chooses its successor in C as the next

node, then this gives rise to an admissible strategy. Also, for a Player 1 node v

in S\W , which is not in an s-admissible cycle, the work defines a minimal safety-

admissible path (minimal s-admissible path in brief) from v as a path P from v

in S leading either to a minimal s-admissible cycle or to a node in W satisfying

the following minimality condition: for no other path Q from v leading either to

a minimal s-admissible cycle or to a node in W is the set of potentially winning

nodes on Q a proper subset of the corresponding set on P . At any Player 1 node

v on a minimal s-admissible path P , if Player 1 chooses its successor in P as the

next node, then this also gives rise to an admissible strategy. The work claims

that identifying all minimal s-admissible cycles and minimal s-admissible paths

is necessary and sufficient for identifying all admissible strategies. This claim is

11

proved in Theorem 1 below.

Algorithm 2 is presented, which computes the set of admissible strategies for

safety games. In step 1, the winning set of nodes W for Player 1 is computed

using Algorithm 1. In step 2, the subgraph G′ of G induced by S is constructed.

For every node v that is in (V1 ∩ S)\W , Algorithm 3 is executed to determine

the set of admissible strategies. In steps 5,6 and 7 the work outputs the set of

all admissible strategies for Player 1 nodes. If a node is winning, Player 1 can

play according to any winning strategy. If a node is not in S, Player 1 can play

arbitrarily. For the remaining nodes, Player 1 plays according to the strategies

obtained from Algorithm 3.

Algorithm 2 Admissible Strategies for Safety Games

Input Game structure G := (V,E) and S ⊆ V , the set of safe nodes
Output Set of admissible strategies for Player 1 nodes

1: Compute the set of winning nodes W for Player 1 using Algorithm 1
2: Construct subgraph G′ := (S,E ′) of G induced by S
3: Mark every v ∈ (V1 ∩ S)\W as not visited
4: For every node in step 3 which is not visited, execute Algorithm 3 on v
5: At any Player 1 node v ∈ W , play according to any winning strategy
6: At any Player 1 node v /∈ S, choose an arbitrary move
7: At any remaining Player 1 node v ∈ S, play according to strategies returned

for v in Algorithm 3

Algorithm 3 presented below computes the values of all admissible strategies

for a Player 1 node v, considering the induced subgraph G′ := (S,E ′). For each

such node v set PW (v) is maintained, each element of which is a pair consisting

of one of the following:

1. a set of potentially winning Player 2 nodes on an s-admissible path from v

to a set in W and v′ the successor of v on such a path, or

2. a set of potentially winning Player 2 nodes on an s-admissible cycle con-

taining v, and v′ the successor of v on such a cycle, or

12

3. a set of potentially winning Player 2 nodes on a path from v which is an

s-admissible path followed by an s-admissible cycle (also called a safety-

admissible lasso (s-admissible lasso in brief)) and v′ the successor of v on

such a lasso.

The algorithm explores every path starting from v. Whenever one of the following

happens, update PW (v):

1. a node u ∈ W is encountered, or

2. an s-admissible cycle containing v is found or,

3. an s-admissible path leading to an s-admissible cycle is found.

Admissible strategies are determined by finding the minimal sets MinPW (v)

in PW (v), i.e., ones that are not strictly contained in any other set, for each

successor v′ of v. Then an admissible strategy will always choose an edge (v, v′)

which lies on a path containing the set of potentially winning nodes v such that

(v, v′) ∈MinPW (v).

Theorem 1. The following statements are equivalent:

1. σ is an admissible Player 1 strategy

2. σ(v) = v′, where v is a Player 1 node satisfying one of the following condi-

tions:

(i) v ∈ S\W and v lies on a minimal s-admissible cycle, or v lies on a

minimal s-admissible lasso or there is a minimal s-admissible path from v

to a node in W , and v′ is the successor of v on such a cycle or lasso or

path, or

(ii) v ∈ W and σ
′
(v) = v′ for some winning strategy σ

′
, or

(iii) v is any other node, i.e., v /∈ S, and σ(v) is any successor of v in G

13

Algorithm 3 Values of admissible strategies at v ∈ (V1 ∩ S)\W
Input v ∈ V1
Output Values of all admissible strategies for v

1: Mark v as visited
2: Initialize PW (v) := ∅
3: Explore every path from v and update PW (v) when one of the following

happens:

Case 1. A node u ∈ W , the winning set of nodes is encountered
PW (v) := PW (v) ∪ ({X|X is the set of all Player 2 nodes on the path from
v to u ∈ W}, v′), where v′ is the successor of v on the path

Case 2. An s-admissible cycle containing v is found
PW (v) := PW (v)∪({X|X is the set of all Player 2 nodes on the s-admissible
cycle containing v}, v′), where v′ is the successor of v on the s-admissible cycle

Case 3. An s-admissible lasso is found
PW (v) := PW (v)∪({X|X is the set of all Player 2 nodes on the s-admissible
lasso}, v′), where v′ is the successor of v on the s-admissible lasso

4: Determine all minimal s-admissible paths and cycles by comparing the sets in
PW (v) for each v′ with respect to containment and store them in MinPW (v)

5: Store the (v, v′) obtained in step 4 in the set Next(v)
6: If Next(v) 6= ∅ then, return each element of Next(v) as values of admissible

strategies at v
7: else return all pairs (v, v′) ∈ E as values of admissible strategies at v

14

Proof. 1 ⇒ 2

Suppose σ is an admissible Player 1 strategy such that for some Player 1 node

v ∈ S\W σ(v) = v′ is not the successor of v in a minimal s-admissible cycle, a

minimal s-admissible path or a minimal s-admissible lasso. Clearly v′ must either

be on an s-admissible path or on an s-admissible cycle or lasso, since otherwise

even Player 2’s cooperation cannot ensure that the resulting play is in S. Suppose

v′ is on an s-admissible cycle C ′, which has the set of potentially winning nodes

H ′ which is not minimal, and hence by assumption there is a successor v′′ of v on

an s-admissible path leading to a node in W , cycle or lasso with the potentially

winning node set being H”, such that H” is strictly contained inside H ′. Let

u ∈ H ′\H”. Then val(σ, ρ, v) < val(σ′, ρ, v), where σ is identical to σ′ at all

nodes except at node v where σ′(v) = v′′ and the Player 2 strategy ρ plays

according to the winning strategy for Player 2 at u i.e., it takes the game outside

S (which exists by definition of a potentially winning node) and cooperates at

every other node, i.e., chooses a successor node in the s-admissible cycle. This is

a contradiction. The case for v′ being on an s-admissible path or lasso is similar.

2 ⇒ 1

Suppose σ is a Player 1 strategy satisfying the following: for v ∈ S\W lying on

an s-admissible path or cycle σ(v) = v′, where v′ is the successor of v in a minimal

s-admissible cycle; for v ∈ W , σ plays according to any winning strategy, and for

any other v plays arbitrarily. Suppose σ is not admissible, i.e., it is dominated by a

Player 1 strategy σ′. Clearly for nodes in W and nodes in S\W from which there

is no s-admissible paths, cycles or lassos, σ′ cannot be better than σ. Suppose

val(σ, ρ, v) < val(σ′, ρ, v) at some node v, where v lies on an s-admissible cycle,

path or lasso. This implies that Out(σ, ρ, v) /∈ Win but Out(σ′, ρ, v) ∈ Win.

Then Out(σ′, ρ, v) must be an s-admissible cycle, s-admissible lasso or contain

an s-admissible path leading to a winning node. By assumption σ(v) = v′ for

15

4.1 Complexity

v ∈ S\W lying on a minimal s-admissible path or cycle where v′ is the successor

of v on such a path, cycle or lasso. This means that there is a potentially winning

Player 2 node u on an s-admissible path, lasso or cycle from v which occurs on

Out(σ′, ρ, v) but not on Out(σ, ρ, v). This implies there is a Player 2 strategy ρ

(in which Player 2 cooperates at every potentially winning node on Out(σ, ρ, v)

but not at u) where Out(σ, ρ, v) ∈ Win but Out(σ′, ρ, v) /∈ Win. This is a

contradiction since σ is dominated by σ′.

Corollary 1. Algorithm 2 finds all admissible strategies for a safety game.

Proof. A Player 1 node v is losing if all its successor nodes are losing. From The-

orem 1 the correctness of admissible strategies for minimal s-admissible paths,

cycles and lassos is obtained. From the algorithm, there are three cases:

Case 1 : v has a minimal s-admissible path to u ∈ W . If Player 1 plays according

to the strategy that leads to such a path, then it is admissible as Player1 can

play according to any winning strategy from u.

Case 2 : v belongs to a minimal s-admissible cycle. A strategy σ(v) = v′ where

(v, v′) lies in a minimal s-admissible cycle is an admissible strategy, whose cor-

rectness is proved by Theorem 1.

Case 3 : v belongs to a minimal s-admissible path that leads to an s-admissible

cycle. A strategy σ(v) = v′ where (v, v′) lies in a minimal s-admissible path

that leads to an s-admissible cycle is an admissible strategy, as a consequence of

Theorem 1.

4.1 Complexity

The complexity of Algorithm 1 is O(|V |+ |E|). For Algorithm 2, determining all

possible cycles and paths for a node v is O((|V |+|E|)∗(|C|+1)) [10] where |C| the

number of cycles. Comparing the cycles and paths for minimality takes O(|P |2 +

16

4.1 Complexity

|C|2) time, where |P | is the number of paths. Hence the overall complexity can

be expressed as: O(|V |+ |E|+ |V1\W |(|P |2 + |C|2 +(|V |+ |E|)∗(|C|+1))), which

is O(|V |!), i.e., O(2|V |log|V |).

17

Chapter 5

Admissible Strategies for

Reachability Games

The reachability goal requires the game to visit a node in a set R after finitely

many steps. Algorithm 4 [9] is presented for computing the set of winning nodes in

a reachability game. Algorithm 4 computes the winning set of nodes by computing

a least fixed point of a monotone operator on (2V ,⊆) [9].

Algorithm 4 Winning Nodes for Reachability Games

Input Game structure G := (V,E) and R ⊆ V , the set of reachable nodes
Output Set of Winning States W

1: T := R
2: Y0 := T
3: i := 1
4: Yi := T ∪ CPre(Yi−1)
5: if Yi 6= Yi−1 then i := i + 1. Goto step 4
6: W := Yi
7: return W

Before presenting the algorithm for computing admissible strategies for reach-

ability games (Algorithm 5), few definitions are required. These definitions apply

to the nodes which are not winning for Player 1 (i.e., not in W) in the reachability

18

game.

A frontier node is a Player 2 node which is in V \W and has at least one edge

to a node in W . The set of all frontier nodes is denoted by Front . FPaths(v, u)

denotes the set of all paths from the Player 1 node v in V1\W to the Player 2

node u in Front that do not include any other Player 2 node w in Front . Front(v)

denotes the set of all frontier nodes u for which FPaths(v, u) 6= ∅.

A reachability-admissible path (r-admissible path in brief) P from v in V1\W

to a node u in Front is a path that satisfies the following properties:

1. P ∈ FPaths(v, u), and

2. there is no other path P ′ from v to u such that F (P ′) ⊂ F (P) where F (Q)

is the set of Player 2 nodes on the path Q that are not in Front .

A potentially hazardous node is a node in (V2\Front)\W which has an outgo-

ing path satisfying one of the following conditions:

1. It can be extended to an infinite path that does not contain a node in Front ,

or

2. It can be extended to two or more paths that end in distinct nodes in Front

and do not contain any other node in Front .

The set of all potentially hazardous nodes is denoted by PH . To determine

the values of Player 1 admissible strategies at a node v from which W is reach-

able in the graph G, a rank is assigned to each node in the components of the

underlying undirected subgraph G′ of G induced by Front(v). The idea is an

admissible strategy would choose a successor of v that lies on an r-admissible

path to a highest ranked node in Front(v). If all r-admissible paths to highest

rank nodes have at least one potentially hazardous node satisfying condition 1

(in the definition of a potentially hazardous node), then an admissible strategy

19

would also choose a successor of v that lies on an r-admissible path to the next

highest ranked node in Front(v). To differentiate between the two conditions in

the definition of a potentially hazardous node, ranks are assigned to the vertices

in V \(W ∪ Front) as well. The rank for the frontier nodes is defined inductively

starting with rank 1 for the nodes in G′ which have out-degree 0. Any node with

unassigned rank that has an edge to a rank i node is assigned rank i + 1. For

example, in Figure 3.2 the rank of v2 is 1 and v1 is 2 and the Player 1 strategy

σ1 that chooses the edge (v0, v1), i.e., toward a higher ranked node, is better

than the Player 1 strategy σ2 that chooses the edge (v0, v2), i.e., toward a lower

ranked node, against the Player 2 strategy {v1 7→ v4, v2 7→ v3} as explained in

Chapter 3. The rank of the remaining nodes in V \(W ∪ Front) is computed as

follows:

1. All Player 1 nodes and Player 2 nodes that are not potentially hazardous

are assigned rank 0.

2. The potentially hazardous nodes satisfying condition 1 (in the definition of

a potentially hazardous node) are assigned rank -1.

3. The potentially hazardous nodes satisfying condition 2 (in the same defini-

tion) are assigned the rank of the lowest ranked node in Front(v) to which

they have an r-admissible path.

Figure 5.1 explains the need for assigning ranks to nodes in V \(W ∪ Front).

Player 2 can prevent Player 1 from entering W forever by choosing the edge

(x, z) at the potentially hazardous node x while the potentially hazardous node

y will always help Player 1 in reaching a frontier node u or w depending on

the outgoing edge Player 2 chooses at y. These nodes are differentiated while

determining the admissible strategy for Player 1 at v, hence x is assigned the

rank -1 and y the rank 0.

20

v

u w t

v1 v2 v3

x yz

W

Figure 5.1: Example demonstrating conditions

Algorithm 5 computes the set of admissible strategies for reachability games.

In step 1, the winning set of nodes are computed W for Player 1 using Algo-

rithm 4. Since any winning strategy of a Player 1 winning node is admissible,

the rest of the algorithm computes values of admissible strategies for the losing

nodes. In step 3, the set of frontier nodes are computed and stored in Front . In

steps 5-14, the ranks of the remaining nodes are computed in V \W . The loop

terminates when all nodes in V \(W ∪ Front) have been assigned a rank. In step

15, the set of all nodes are computed in Front(v) for v ∈ V1\W . In steps 17-30,

the induced subgraph G′ is constructed for the nodes in Front(v), if Front(v) 6= ∅.

In step 31, Algorithm 6 is executed to compute the rank of every vertex in the

induced subgraph G′ and the remaining vertices in V \W . In step 34, Algorithm 7

is executed to compute the values of admissible strategies for every component

C of the underlying undirected graph of G′. In steps 40-42, the strategies for

Player 1 are returned.

21

Algorithm 6 computes the rank for the nodes in G′. In steps 5 and 6, the nodes

with out-degree 0 to 1 are initialized. In steps 9-12, ranks to the remaining nodes

in G′ are assigned by checking if they have an outgoing edge to a node with the

previously assigned rank. The value of rank at every iteration is incremented.

The algorithm terminates when every node of G′ has been assigned a rank.

Algorithm 7 computes the values of admissible strategies at v for component

C of the underlying undirected graph of G′. The following predicates are defined

to describe the algorithm:

1. Lies(v, v′, P) , the edge (v, v′) lies on the path P from v;

2. rAdmissible(P, v, S, r) , P is an r-admissible path from v to a node in S

where all nodes in S have rank r.

The following sets are defined to describe the algorithm:

1. PH (P) , the set of potentially hazardous nodes on the r-admissible path

P ;

2. Nodes(P) , the set of nodes on an r-admissible path P except the first and

last one.

Let X be the set of all nodes u in C, the present component of G′ whose

rank is r, where r is the current rank in the iteration. Let h be the highest rank

assigned to any node in C. The algorithm includes v′ in the set A of values of

admissible strategies at v when one of the following conditions is satisfied, where

the conditions are checked from top to bottom:

1. cond1 , ∃Q, r[r = h∧ rAdmissible(Q, v,X, r)∧Lies(v, v′, Q)∧PH (Q) = ∅]

2. cond2 , ∃Q, r[r 6= h ∧ rAdmissible(Q, v,X, r) ∧ Lies(v, v′, Q) ∧ PH (Q) 6= ∅

∧ ∀w ∈ Nodes(Q)[rank(w) = 0 ∨ r ≤ rank(w) ≤ h]]

22

3. cond3 , ∃Q, r[r 6= h∧ rAdmissible(Q, v,X, r)∧Lies(v, v′, Q)∧PH (Q) = ∅]

4. cond4 , ∃Q, r[rAdmissible(Q, v,X, r) ∧ Lies(v, v′, Q) ∧ PH (Q) 6= ∅]

Figure 5.1 explains the need for conditions cond1 to cond4. The r-admissible

path (v − −x − −u) illustrates the use for cond4 due to the edge (x, z) which

results in x having rank -1. Further, the r-admissible paths (v − −y − −u) and

(v − −y − −w) show the use for cond2 due to the nature of y whereas the path

(v − −w) shows the use for cond3 as the path does not have any potentially

hazardous node. Since cond1 is not satisfied (which is the same as cond3 except

the path should be from v to u instead of w), the Player 1 strategy σ1 that

chooses (v, v1) that lies on the r-admissible path (v − −x − −u) is no better

than the Player 1 strategy σ2 that chooses (v, v2) that lies on any of the two r-

admissible paths (v−−y−−u) or (v−−y−−w) against any Player 2 strategy.

On the other hand, the Player 1 strategy σ2 that chooses (v, v2) performs better

than the Player 1 strategy σ3 that chooses (v, v3) that lies on the r-admissible

path (v −−w) against the Player 2 strategy {u 7→ k ∈ W,w 7→ t, t 7→ t}. Hence

σ1 and σ2 are admissible strategies and not σ3. The algorithm iterates from the

highest rank to the lowest rank in C. For each rank r, it checks from conditions

cond1 to cond4 in order. Whenever a condition from cond1 to cond3 is satisfied,

it returns the set A. If cond4 is satisfied, the algorithm proceeds to the next

lower rank after storing the set A of possible values of admissible strategies at

node v ∈ V1\W .

The following results are needed to prove the correctness of Algorithm 5

(Corollary 2). Lemma 1 states that any admissible strategy would choose an

edge along an r-admissible path from any node v ∈ V1\W from which W is

reachable. Lemma 2 states that if any of the conditions cond1 or cond2 or cond3

is satisfied for an r-admissible path which terminates at a node in Front with

rank r, then no strategy that chooses an edge along an r-admissible path which

23

Algorithm 5 Admissible Strategies for Reachability Games

Input Game structure G := (V,E) and R ⊆ V
Output Set of admissible strategies for Player 1

1: Compute W for Player 1 using Algorithm 4
2: G′ := null
3: Front := {v|v ∈ V2\W and ∃u.(v, u) ∈ W}
4: for every v ∈ V1\W do
5: for every node u ∈ V1\W ∪ V2\(W ∪ Front ∪ PH) do
6: rank(u) := 0
7: end for
8: for every node v ∈ PH do
9: if v is the source of an infinite path that does not contain a node in

Front then
10: rank(v) := −1
11: else
12: rank(v) := r, where r is the lowest ranked node in Front to which it

has an r-admissible path
13: end if
14: end for
15: Let Front(v) be the set containing all u ∈ Front such that FPaths(v, u) 6= ∅.
16: if Front(v) 6= ∅ then
17: G′ = (V ′, E ′) := (∅, ∅)
18: for every vertex p ∈ Front(v) do
19: V ′ := V ′ ∪ {p}
20: end for
21: for every pair of nodes p1, p2 ∈ Front(v) do
22: if all paths from p1 lead to p2 in G\W such that no node in Front

repeat itself and do not contain a node u with rank(u) = −1 then
23: if (p2, p1) ∈ E ′ then
24: E ′ := E ′\{(p2, p1)}
25: else
26: E ′ := E ′ ∪ {(p1, p2)}
27: end if
28: Goto step 11.
29: end if
30: end for
31: Call Algorithm 6 to compute the rank of nodes in G′

24

32: S(v) := ∅ // S is the set of all v′ s.t. σ(v) = v′ for some admissible
strategy σ

33: for every component C in the underlying undirected graph of G′ do
34: Execute Algorithm 7 for C
35: S(v) := S(v) ∪ A
36: end for
37: Re-initialize G′ = (V ′, E ′) with V ′ := ∅, E ′ := ∅
38: end if
39: end for
40: At any Player 1 node v ∈ W , play according to any winning strategy
41: At any Player 1 node v /∈ W such that Front(v) = ∅, choose an arbitrary

move
42: At any other Player 1 node v, choose any node in S(v)

Algorithm 6 Compute rank for nodes in G′

1: for every component C of the underlying undirected graph of G′ do
2: r := 1
3: while C has vertices left to be assigned a rank do
4: if r = 1 then
5: for every vertex v in G′ with out-degree 0 do
6: rank(v) := r
7: end for
8: else
9: for every vertex v in G′ that does not have a rank and has an edge to
v′ where rank(v′) = r − 1 do

10: rank(v) := r
11: end for
12: end if
13: r := r + 1
14: end while
15: end for

25

Algorithm 7 Values of admissible strategies at v for component C

Output A = {v′ |σ(v) = v′ for an admissible strategy at v}
1: A := ∅
2: h := highest rank in C
3: l := lowest rank in C
4: for r := h to l do
5: flag := 0
6: flag1 := 0
7: X := set of all nodes in C with rank r
8: Determine the set A′ of all v′ s.t. (v, v′) lies on an r-admissible path Q from
v to a node u ∈ X where rank(w) = 0 for every w ∈ Nodes(Q)

9: A := A ∪ A′ // Condition cond1 holds. Q does not contain any node in
PH

10: if A′ 6= ∅ then
11: flag := 1
12: end if
13: if r = h and flag = 1 then
14: return A // A′ 6= ∅
15: end if
16: Determine the set A′ of all v′ s.t. (v, v′) lies on an r-admissible path Q from

v to a node in X // Q contains at least one node in PH
17: if r = h then
18: A := A ∪ A′ // Condition cond2 holds
19: else
20: if A′ = ∅ then
21: return A // r 6= h
22: else
23: for every v′ ∈ A′ do
24: Q := the set of all r-admissible paths that have the edge (v, v′)
25: for every Q ∈ Q do
26: if w ∈ Nodes(Q) s.t. rank(w) = −1 or 1 ≤ rank(w) < r then
27: flag1 := 1
28: break
29: end if
30: end for
31: if flag1 = 0 then
32: A := A\{v|v ∈ A′ in step 8} // Condition cond3 holds
33: return A
34: end if
35: end for

26

36: if flag = 1 then
37: return A
38: else
39: A := A ∪ A′ from step 16
40: end if
41: end if
42: end if
43: end for

terminates at a node in Front with rank k < r is admissible. Lemma 3 states that

if there is an r-admissible path P which terminates at a node in Front with rank

k and there is an admissible strategy that chooses an edge along an r-admissible

path which terminates at a node in Front with rank r < k, then P must satisfy

only condition cond4 and not any of cond1 or cond2 or cond3. Theorem 2 states

that a strategy is admissible iff at least one of the conditions cond1, . . . , cond4

holds when they are checked in that order.

Lemma 1. If σ is an admissible Player 1 strategy, v ∈ V1\W and the set

W is reachable from v in G, then σ(v) = v′ implies the pair (v, v′) satisfies

∃Q, r[rAdmissible(Q, v,X, r) ∧ Lies(v, v′, Q)].

Proof. If v ∈ V1\W andW is reachable from v then there is always an r-admissible

path from v by considering only the paths that end in the first node in Front and

choosing those among them that contain a minimal number of Player 2 nodes.

An admissible strategy σ would always choose a successor node v′ at v where

v′ lies on an r-admissible path because such a path contains a minimal set of

Player 2 nodes that can take the game away from W . The proof is along similar

lines as Theorem 1 for safety.

Lemma 2. If σ is an admissible strategy with σ(v) = v′ where (v, v′) lies on an

r-admissible path Q satisfying the following properties:

1. Q terminates at a node in Front(v) with rank r and,

27

2. no node in Q has rank -1

then, for any other strategy σ′ with σ′(v) = v′′ where (v, v′′) lies on an r-admissible

path Q′ that terminates at a node in Front(v) with rank k > r, the relation

val(σ, ρ, v) > val(σ′, ρ, v) holds for all Player 2 strategies ρ.

Proof. It is observed that if no node u along the r-admissible pathQ has rank(u) =

−1, then the path Q will inevitably reach a node in Front(v) with rank k ≥ 1 as

only the nodes ranked as -1 have the potential to prevent the game from reaching

Front(v) forever. Further, it is clear from the computation of rank that for any

two nodes u,w ∈ Front(v) and in the same component of the underlying undi-

rected graph of G′ where rank(u) > rank(w), there does not exist any path from

w to u and all paths from u lead to w in G\W and do not include any potentially

hazardous node u′ with rank(u′) = −1.

From the observations the following cases are to be considered:

Case 1 : Q′ has at least one node u where rank(u) = −1

This implies that a node in Front(v) with rank k may not be reached at all,

whereas by following strategy σ, one can definitely reach Front(v) and enter

W through one of the nodes w ∈ Front(v), with rank(w) ∈ [r, h]. Hence

val(σ, ρ, v) > val(σ′, ρ, v) in this case.

Case 2 : Q′ has no node u where rank(u) = −1

This implies that the path Q will inevitably reach a node in Front(v) with rank

k ≥ 1. So, by following strategy σ, one can definitely reach Front(v) and enter W

through one of the nodes w ∈ Front(v), with rank(w) ∈ [r, h] and by following

strategy σ′, W can be entered through one of the nodes w ∈ Front(v), with

rank(w) ∈ [k, h] as shown in Figure 5.2. Since k < r, if at one of the nodes

u′ ∈ Front(v) with k < rank(u′) <= r Player 2 chooses the edge that leads to W

and at none of the nodes with rank in [k, h] Player 2 choose the edge that leads

to W , then Out(σ, ρ, v) ∈ Win but Out(σ′, ρ, v) /∈ Win. Hence val(σ, ρ, v) >

28

val(σ′, ρ, v) in this case as well.

v

u w

W

part of V \W

Figure 5.2: Player 1 chooses edge leading to u over edge leading to v

Lemma 3. 1. Suppose σ is an admissible strategy with σ(v) = v′ and (v, v′)

lies on an r-admissible path leading to a node in Front(v) with rank r 6= h.

Then for all admissible strategies σ′ with σ′(v) = v′′ where v′ 6= v′′ if the

pair (v, v′′) lies on an r-admissible path leading to a node in Front(v) with

rank k, where r+1 ≤ k ≤ h then the pair (v, v′′) satisfies only cond4 among

the four conditions on page 22-23.

2. Suppose σ′ is an admissible strategy with σ′(v) = v′′ and the pair (v, v′′) lies

on an r-admissible path leading to a node in Front(v) with rank k, where

r + 1 ≤ k ≤ h, for some r and further satisfies only cond4 among the four

conditions on page 22-23. Further suppose there is a v′ with v′ 6= v′′ and

(v, v′) lies on an r-admissible path leading to a node in Front(v) with rank

r. Then there exists an admissible strategy σ satisfying σ(v) = v′.

Proof. (1): For the sake of contradiction assume that σ is an admissible strategy

and for an admissible strategies σ′ with σ′(v) = v′′ where v′ 6= v′′ the pair (v, v′′)

29

lies on an r-admissible path Q leading to a node in Front(v) with rank k, where

r + 1 ≤ k ≤ h and satisfies cond1, cond2 or cond3. If cond1 or cond3 is satisfied,

then there are no potentially hazardous nodes along the r-admissible path Q. So

a node in Front(v) with rank k > r will definitely be reached along all paths

starting with the pair (v, v′′). From Lemma 2, val(σ′, ρ, v) > val(σ, ρ, v) for any

Player 2 strategy ρ. This implies that Out(σ′, ρ, v) ∈ Win but Out(σ, ρ, v) /∈

Win, a contradiction. If cond2 is satisfied, then all Player 2 nodes along the

r-admissible path Q have rank r′ ∈ [r + 1, h]. So a node in Front(v) with rank

k > r will definitely be reached along all paths starting with the pair (v, v′′).

From Lemma 2, val(σ′, ρ, v) > val(σ, ρ, v) for any Player 2 strategy ρ. This

implies that Out(σ′, ρ, v) ∈Win but Out(σ, ρ, v) /∈Win, again a contradiction.

(2): For the sake of contradiction assume that for all admissible strategies

σ′ with σ′(v) = v′′ the pair (v, v′′) lies on an r-admissible path leading to a

node in Front(v) with rank k, where r + 1 ≤ k ≤ h, for some r and satisfies

only cond4. Further, assume there is a v′ with v′ 6= v′′ and (v, v′) lies on an

r-admissible path leading to a node in Front(v) with rank r, and there does not

exist an admissible strategy σ satisfying σ(v) = v′. If only cond4 is satisfied

for the pair (v, v′′), then there is at least one potentially hazardous node u with

rank(u) = −1 in the r-admissible path Q. From Lemma 2, there is no guarantee

that a node in Front(v) with rank k > r will be reached. Hence it cannot be

said that val(σ′, ρ, v) > val(σ, ρ, v) for any Player 2 strategy ρ, thus arriving at

a contradiction. Hence both σ and σ′ are admissible.

Theorem 2. The following statements are equivalent:

1. σ(v) = v’ for an admissible Player 1 strategy σ where v ∈ V1\W and W is

reachable from v in G

2. the pair (v, v′) satisfies one of the following statements where 1 ≤ r ≤ h:

30

(a) cond1

(b) ∼ cond1⇒ cond2

(c) ∼ (cond1 ∨ cond2)⇒ cond3

(d) ∼ (cond1 ∨ cond2 ∨ cond3)⇒ cond4.

Proof. 1 ⇒ 2

By Lemma 1 (v, v′) lies on an r-admissible path Q from v to u ∈ Front(v). Let u

be of rank r.

Case 1: r = h

For the sake of contradiction assume that none of the above four statements is

true. For this to hold, all the conditions cond1 to cond4 are required to be false.

Since r = h, cond2 and cond3 are false. Since cond1 is false and σ is an admissible

strategy, it can be concluded that PH (Q) 6= ∅. Since statement (d) and therefore

cond4 is false, by Lemma 1 PH (Q) = ∅ for all r-admissible paths Q, which is a

contradiction.

Case 2: r 6= h

Again for the sake of contradiction assume that none of the above four statements

is true. Since r 6= h, cond1 is false. Since, Lemma 3 holds for all admissible

strategies σ′ with σ′(v) = v′′ and v′′ 6= v′, the pair (v, v′′) lies on an r-admissible

path leading to a node in Front(v) with rank k, where r + 1 ≤ k ≤ h, for

some r and satisfies only cond4 among the four conditions on page 22-23. Since

by assumption statement (b) is false, cond2 is false. Since σ is an admissible

strategy, it can be concluded that either of the following two properties must

hold for Q:

1. PH (Q) = ∅

2. ∃w ∈ Nodes(Q)[1 ≤ rank(w) < r].

31

Since by assumption, cond3 is also false, and σ is an admissible strategy, it can

be concluded that PH (Q) 6= ∅. This implies property 2 must hold and property

1 must not for cond2 and cond3 to be false at the same time. Since statement (d)

and therefore cond4 is false, by Lemma 1 PH (Q) = ∅ for all r-admissible paths

Q, which is a contradiction.

2 ⇒ 1

For the sake of contradiction assume that one of the four statements is true and

σ(v) 6= v′ for all admissible strategies σ. If statement (a) is true and therefore

cond1 is true, from the first observation in the proof of Lemma 2 any r-admissible

path starting with the pair (v, v′) will inevitably reach a node in Front(v). Hence

σ is admissible which is a contradiction. If statement (b) is true and statement

(a) is false, then cond1 is false and cond2 is true, from the first observation in

the proof of Lemma 2 any r-admissible path starting with the pair (v, v′) will

inevitably reach a node in Front(v). Hence σ is admissible, a contradiction. If

statement (c) is true and statements (a) and (b) are false, then cond1 and cond2

are false and cond3 is true. Since cond3 is true, from the first observation in

the proof of Lemma 2 any r-admissible path starting with the pair (v, v′) will

inevitably reach a node in Front(v). Hence σ is admissible, a contradiction. If

statement (d) is true and statements (a), (b) and (c) are false, then only cond4 is

true. If r = h and conditions cond1 to cond3 are false, σ is admissible. Otherwise,

from Lemma 3 it is known that for all admissible strategies σ′ with σ′(v) = v′′,

the pair (v, v′′) lies on an r-admissible path leading to a node in Front(v) with

rank k, where r + 1 ≤ k ≤ h, for some r and satisfies only cond4. Hence σ is

admissible, which is again a contradiction.

The following result about the correctness of Algorithm 5 is a consequence of

Theorem 2.

32

5.1 Complexity

Corollary 2. Algorithm 5 returns all the admissible strategies for a reachability

game.

5.1 Complexity

The time complexity of Algorithm 4 is O(|V |+ |E|). Step 3 of Algorithm 5 takes

O(|V |+ |E|) time. In step 5, computing the set of all paths takes O((|V |+ |E|) ∗

(|P |+ 1)) time [10], where |P | is the number of paths. In steps 16 through 30, to

determine an edge from p1 to p2 for p1, p2 ∈ V ′, all paths need to be checked from

p1 to p2 which takes O(|P |2) time. Algorithm 6 requires O(|Front(v)|) time to

compute the rank of a vertex. Algorithm 7 runs for every component C in G′. The

computation of Algorithm 7 takes O(|P |2) time. Hence the overall complexity of

Algorithm 5 is O(|V |+ |E|+ |V1\W | ∗ ((|V |+ |E|)∗ (|P |+ 1) + |P |2 + |Front(v)|+

|C| ∗ |P |2)), where |C| denotes the number of components in G′ for v ∈ V1\W .

This is O(|V |!), i.e., O(2|V |log|V |).

33

Chapter 6

Conclusions

The work aims to solve admissible strategies for safety and reachability objectives

which are arguably the most important among all non-prefix-independent goals.

The work uses graph-theoretic notions to provide a solution for the problem at

hand.

The work is a special case of [6; 7] where only two properties are taken into

consideration and much simpler algorithms are proposed for them which are also

lower in complexity (precisely O(2|V |log|V |) time) than the double exponential

algorithm in [6; 7].

The algorithms have been proven to be correct and exhaustive. Previous

claims made by Faella [3] have also shown to be incorrect. Work on cooperation

and rational behavior of players is now an emergent area of research [3; 5; 6; 7; 8]

and the work done claims to be the first approach in solving zero sum games with

winning conditions as safety and reachability in exponential time with graph-

theoretic notions. The work can be extended to solve objectives like Büchi,

Muller, Parity, etc. in future. The work is also useful in compositional synthesis

where each component is to be composed and admissible strategies are to be

determined and shown to hold good.

34

References

[1] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in Pro-

ceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’89, pp. 179–190, ACM, 1989. 1

[2] R. Brenguier, J.-F. Raskin, and M. Sassolas, “The complexity of admissi-

bility in omega-regular games,” in Proceedings of the Joint Meeting of the

Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)

and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer

Science (LICS), CSL-LICS ’14, pp. 23:1–23:10, ACM, 2014. 1, 2, 7

[3] M. Faella, “Admissible strategies in infinite games over graphs,” in Mathe-

matical Foundations of Computer Science (MFCS’09), vol. 5734 of LNCS,

pp. 307–318, Springer, 2009. 2, 3, 9, 34

[4] E. Grädel, W. Thomas, and T. Wilke, eds., Automata, Logics, and Infi-

nite Games: A Guide to Current Research [outcome of a Dagstuhl seminar,

February 2001], vol. 2500 of LNCS, Springer, 2002. 3

[5] R. Bloem, R. Ehlers, S. Jacobs, and R. Könighofer, “How to handle assump-

tions in synthesis,” in Proceedings 3rd Workshop on Synthesis, SYNT 2014,

Vienna, Austria, July 23-24, 2014., pp. 34–50, 2014. 3, 4, 34

[6] W. Damm and B. Finkbeiner, “Does it pay to extend the perimeter of a

35

REFERENCES

world model?,” in 17th International Symposium on Formal Methods (FM

2011), vol. 6664 of LNCS, Springer, 2011. 3, 4, 34

[7] W. Damm and B. Finkbeiner, “Automatic compositional synthesis of dis-

tributed systems,” in FM 2014: Formal Methods (C. Jones, P. Pihlajasaari,

and J. Sun, eds.), vol. 8442 of LNCS, pp. 179–193, Springer International

Publishing, 2014. 3, 4, 34

[8] D. Fisman, O. Kupferman, and Y. Lustig, “Rational synthesis,” in TACAS

2010, vol. 6015 of LNCS, pp. 190–204, Springer, 2010. 3, 4, 34

[9] W. Thomas, “On the synthesis of strategies in infinite games,” in STACS,

pp. 1–13, 1995. 10, 18

[10] D. B. Johnson, “Finding all the elementary circuits of a directed graph,”

SIAM J. Comput., vol. 4, pp. 77–84, 03 1975. 16, 33

36

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Admissible Strategies for Safety Games
	4.1 Complexity

	5 Admissible Strategies for Reachability Games
	5.1 Complexity

	6 Conclusions
	References

