OCTAL: Graph Representation Learning for LTL Model Checking

Prasita Mukherjee and Haoteng Yin

Department of Computer Science, Purdue University

DLG-KDD 2023

(Sensor = cool) until (temperature >= 70)

Model Checking

LTL Model Checking - Specification

Specification is expressed using Linear Temporal Logic

Symbol	G	F	R	W	М	X	U
Meaning	globally	finally	release	weak until	strong release	next	until

• a U b - a is true "until" b is true

```
{aaaab...,ba....,aacb...,abb....}
```

• Ga - a is "always" true {aaaaa...,{a,b}a....,aacb...,abb....}

LTL Model Checking - System (Model)

System is expressed using a Büchi Automaton

Traditional Model Checking

B accepting (aU!b).

Challenges of Traditional Model Checking

 $B_{\neg\phi}$ accepting !(a U !b)

B accepting (a U!b).

Exponential time and space

OCTAL: Graph Representation Learning for LTL Model Checking

- First Graph Representation Learning-based framework for LTL Model Checking
- Takes advantage of inherent graph structures of automaton and specification to learn embeddings of states and transitions
- Aims to decrease the high cost of model checking

Formulate Model Checking as Graph Representation Learning

Complexity Comparison

Traditional MC: $|B| \times 2^{-}|\phi|$

OCTAL: $|B + \phi|$

OCTAL: Node Encoding

Initial	Final	
0	0	
0	1	
1	0	
1	1	

Model Checking Scenarios

General	Special (Equivalence)		
$B \leftrightarrow \phi$	$B \leftrightarrow \varphi$		
$B o \phi$	$B \to \phi$		
B ← φ	B ← φ		
B ≠ φ	B ≠ φ		

Datasets

Dataset	Len_LTL	#State	#Transition
Synth	[1 - 80]	[1 - 95]	[1 - 1,711]
RERS	[3 - 39]	[1 - 21]	[3 - 157]

- Synth is a synthetic dataset to test the effectiveness of OCTAL on diverse and complex systems (specifications)
- RERS is a dataset adapted from the LTL specifications of RERS'19
- RERS is designed to test the effectiveness of OCTAL on real world, traditional MC oriented systems (specifications)
- Synth and RERS are designed for both general and special model checking cases
- The datasets comprise of tuples of the form (Β, φ, *l*)

Architecture and Experimental Setup

- Trained and validated with an 80-20 split
- All sets are randomly shuffled and contain equal number of positives and negatives
- Three baselines are considered for performance analysis

Baseline Models

MLP

Link Predictor

Evaluation Results - General Scenario

Models	Accuracy		Precision		Recall	
Models	SynthGen	RERSGen	SynthGen	RERSGen	SynthGen	RERSGen
MLP	46.44±0.86	51.73±1.38	46.83±0.64	51.72±1.46	52.19±3.66	48.01±9.36
LinkPredictor	60.76±0.81	67.93±1.18	61.86±0.92	66.66±1.39	56.12±0.81	71.83±1.17
OCTAL(GCN)	76.76±0.95	88.23±0.75	84.77±1.20	88.97±1.11	65.26±2.27	87.32±2.21
OCTAL(GIN)	77.96±1.71	89.48±0.61	85.37±1.11	89.63±2.17	67.51±3.99	89.37±1.73

Dataset	LTL3BA(I)	LTL3BA(O)	Spot(I)	Spot(O)	SOTA M
SynthGen	351×	11×	52×	1.7×	I := infer
RERSGen	54×	2×	30.5×	1.6×	O := grap

MCs

rence ph + I

Evaluation Results - Special Scenario

Models	Accuracy		. Precision		Recall	
2720 0020	SynthSpec	RERSSpec	SynthSpec	RERSSpec	SynthSpec	RERSSpec
MLP	48.90±0.80	59.53±1.66	48.90±0.75	59.07±1.10	45.39±2.86	61.96±5.67
LinkPredictor	73.13±1.11	73.54±1.98	72.39±0.98	70.02±1.98	74.87±2.80	82.41±2.84
OCTAL(GCN)	95.18±0.47	95.45±0.72	95.32±0.71	91.82±1.02	95.03±0.76	99.81±0.29
OCTAL(GIN)	95.37±0.69	96.19±0.62	94.57±1.39	95.52±0.69	96.30±0.68	96.94±1.91

Dataset	LTL3BA(I)	LTL3BA(O)	Spot(I)	Spot(O)	SOTA MCs
SynthSpec	282×	9.3×	49×	1.6×	I := inference O := graph + I
RERSSpec	37.3×	$2\times$	30.5×	1.6×	

Conclusions and Future Work

- OCTAL is the first GRL-based framework for LTL model checking
- OCTAL achieves significant speedups over SOTA tools with consistent prediction performance
- OCTAL consistently achieves ~95% accuracy on special model checking
- OCTAL can be used to make MC affordable

 In future, we propose to extend OCTAL to support counter example traces for the "no" predictions.