
Prasita Mukherjee Cover Letter

My research focuses on broadening the scope of intractable problems in the domain of formal
methods and programming languages by providing learning-based solutions. A second major
focus of my research is to develop automated solutions for problems that can be mapped to
first/higher order logic- with little to no user help.

ResearchBackground Inmy academic career, I haveworked on several research projects
in the domains of formal methods, programming languages and AI. In this section, I describe
the two key research areas that I have worked on and that interest me the most.

Learning based solutions in the domain of computationally intractable problems like,
LTLmodel checking and program synthesis, primarily seek to provide low-cost solutions with
generalization capabilities.

Traditional model checkers prove costly as they suffer from the state space explosion prob-
lem that prevents model checking from being applied to a wider domain. To bridge this gap
and make model checking more accessible, we designed a Graph Representation Learning
framework OCTAL [1] that takes advantage of the natural graph structure of the automaton
and expression tree structure of LTL to build a unified graph structure, and learn the struc-
ture and semantics of the system and specification through message passing. We performed
rigorous experiments on OCTAL, and obtained up to ∼ 95% accuracy and ∼ 2× speedups over
traditional model checkers, hence broadened the scope of model checking by providing a low
cost learning based solution, compromising some accuracy.

The second body of work I am investigating in this domain called SynVer [2], seeks to
advance synthesis and verification efforts for mainstream languages like C, by deploying a
Large Language Model (LLM) as a black-box synthesizer, with full functional specifications.
We identify syntactic and semantic biases in the search space and specifications, that are
amenable to automated verification, and design prompts accordingly. We also propose a
specification-verification tool on top of Verified Software Toolchain (VST) [3] to automate
the verification process. Our results demonstrate that the biases reflected in the prompt de-
sign and specifications, synthesizes and verifies most of the programs in the benchmarks, at
the first try.

Full automated reasoning seeks to provide correct solutions to questions framed in logic
with no user assistance. This body of research is very challenging and appealing as questions
in first, or higher order logic are undecidable. Hence, providing provably correct solutions and
identifying decidable fragments of the problem at hand, would make it easier, especially for
end users. My research in this domain has been on three projects: First, analyzing the equiv-
alence of snippets of a programming language. Second, analyzing the feasibility of shared
memory data structures in a distributed system setting [4], and third, relational verification
of programs using E-Graphs [5]. The first and second projects rely on SOTA SMT solvers like
Z3 [6] and CVC5 [7] to analyze and provide solution models for counter example cases. My
research in these two projects was to encode the execution semantics of the programming
language and data structures into an SMTLIB [8] format, query an SMT solver for analysis,
identify the decidable fragment of the language and perform experimental analysis to draw
conclusions for the respective problems. The third project, aims to verify if two programs
are observationally equivalent, by constructing a product program alignment using e-graphs.
We demonstrate that the product programs are relatively easier to verify, requiring simpler
invariants. My contribution was to come up with manual loop invariants where automated
inference failed, and prove them in VST, along with the demonstration that the invariants

1

although complex enough to require interactive theorem proving, were still simpler as com-
pared to other alignments.

References

[1] Prasita Mukherjee, Haoteng Yin, Susheel Suresh, and Tiark Rompf. “OCTAL: Graph Representation Learn-
ing for LTL Model Checking”. CoRR (2022). doi: 10.48550/arXiv.2207.11649. arXiv: 2207.11649. url:
https://doi.org/10.48550/arXiv.2207.11649.

[2] Prasita Mukherjee and Benjamin Delaware. Towards Automated Verification of LLM-Synthesized C Pro-
grams. 2024. arXiv: 2410.14835 [cs.PL]. url: https://arxiv.org/abs/2410.14835.

[3] Andrew W Appel. “Verified Software Toolchain: (Invited Talk)”. European Symposium on Programming.
2011.

[4] Kartik Nagar, Prasita Mukherjee, and Suresh Jagannathan. “Semantics, Specification, and Bounded Veri-
fication of Concurrent Libraries in Replicated Systems”. Computer Aided Verification - 32nd International
Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I. Ed. by Shuvendu K. Lahiri
and Chao Wang. Lecture Notes in Computer Science. Springer, 2020. doi: 10.1007/978-3-030-53288-
8_13. url: https://doi.org/10.1007/978-3-030-53288-8_13.

[5] Robert Dickerson, Prasita Mukherjee, and Benjamin Delaware. “KestRel: Relational Verification Using E-
Graphs for Program Alignment”. CoRR (2024). doi: 10.48550/ARXIV.2404.08106. arXiv: 2404.08106.
url: https://doi.org/10.48550/arXiv.2404.08106.

[6] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”. International conference on Tools
and Algorithms for the Construction and Analysis of Systems. 2008.

[7] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman
Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, et al. “cvc5: A versatile and industrial-
strength SMT solver”. International Conference on Tools and Algorithms for the Construction and Analysis of
Systems. 2022.

[8] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. “The smt-lib standard: Version 2.0”. Proceedings of the 8th
international workshop on satisfiability modulo theories (Edinburgh, UK). 2010.

2

